Publicat: 23 august 2011
Microbiomul și artrita reumatoidă
Jose U. Scher &Steven B. Abramson
Reumatologie volum 7 , pagini 569 - 578 ( 2011 )
227 Referințe
Abstract
Oamenii nu sunt (și nu au fost niciodată) singuri. Din momentul în care ne-am născut, milioane de microorganisme ne populează corpurile și coexistă cu noi destul de pașnic pentru tot restul vieții.
Acest microbiom reprezintă totalitatea microorganismelor (și a genomului lor) pe care le dobândim în mod necesar din mediul înconjurător.
Microorganismele care trăiesc în sau pe noi au evoluat pentru a extrage energia de care au nevoie pentru a supraviețui, iar în schimb susțin capacitățile fiziologice, metabolice și imune care au contribuit la succesul nostru evolutiv.
Deși în prezent este catalogată ca o afecțiune autoimună și considerată o boală genetică complexă, cauza finală a artritei reumatoide (RA) rămâne evazivă.
Se pare că interacțiunea dintre factorii genetici predispozanți și declanșatorii de mediu este necesară pentru manifestarea bolii. Noile idei din analizele ADN bazate pe secvența comunităților microbiene intestinale și un interes reînnoit pentru imunologia mucoaselor sugerează că microbiomul reprezintă un factor de mediu important care poate influența manifestarea bolii autoimune.
Această revizuire rezumă indicii istorice care sugerează un posibil rol pentru microbiota în patogenia RA și se va concentra pe noile tehnologii care ar putea oferi dovezi științifice pentru a susține această ipoteză.
Puncte cheie
În artrita reumatoidă (RA) - o tulburare autoimună complexă, poligenică, autoimună cu impact major asupra indivizilor și societății - genele au un rol, dar factorii de mediu sunt necesari pentru manifestarea bolii
Mai multe linii de investigații epidemiologice și clinice au implicat mai multe microorganisme în patogeneza RA; cu toate acestea, nu a putut fi stabilită cauzalitatea
Microbiomul este definit ca totalitatea microorganismelor și genele acestora care locuiesc într-un mediu unic; microbiomul uman depășește genele umane după mai multe ordine de mărime
Înțelegerea rolului microorganismelor în modularea sănătății și a bolilor a fost foarte avansată prin tehnologiile de secvențiere a ADN-ului independent de cultură și idei noi asupra imunologiei mucoasei
Experimentele fără germeni și gnotobiotice au oferit o înțelegere mai profundă a interacțiunilor gazdă-microbiene și au arătat că bacteriile intestinale pot induce autoimunitate în modelele animale predispuse genetic
Sunt în curs de desfășurare studii pentru a evalua rolul microbiomului în RA umană și în bolile aferente, în speranța că mecanismele bolii vor fi elucidate și identificate ținte terapeutice
Referințe
1 Savage, DC Ecologie microbiană a tractului gastrointestinal. Annu. Rev. Microbiol. 31 , 107–133 (1977).
2 Backhed, F., Ley, RE, Sonnenburg, JL, Peterson, DA și Gordon, JI Host - mutualismul bacterian în intestinul uman. Știința 307 , 1915–1920 (2005).
3 Lederberg, J. Istorie infecțioasă. Știință 288 , 287–293 (2000).
4 Lederberg, J. și McCray, AT „Ome dulce" omics - O comoară genealogică a cuvintelor. Savant 15 , 8–9 (2001).
5 Turnbaugh, PJ și colab . Proiectul microbiomului uman. Nature 449 , 804–810 (2007).
6 Chervonsky, AV Influența mediului microbian asupra autoimunității. Nat. Immunol. 11 , 28–35 (2010).
7 Klareskog, L., Catrina, AI și Paget, S. Artrita reumatoidă. Lancet 373 , 659–672 (2009).
8 MacGregor, AJ și colab . Caracterizarea contribuției genetice cantitative la artrita reumatoidă folosind date de la gemeni. Reumă de artrită. 43 , 30–37 (2000).
9 Stahl, EA și colab . Meta-analiza studiului de asociere la nivelul genomului identifică șapte noi loci cu risc de artrită reumatoidă. Nat. Genet. 42 , 508–514 (2010).
10 Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).
11 Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).
12 Svendsen, A. J., Holm, N. V., Kyvik, K., Petersen, P. H. & Junker, P. Relative importance of genetic effects in rheumatoid arthritis: historical cohort study of Danish nationwide twin population. BMJ 324, 264–266 (2002).
13 Tobón, G. J., Youinou, P. & Saraux, A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J. Autoimmun. 35, 10–14 (2010).
14 Short, C. L. The antiquity of rheumatoid arthritis. Arthritis Rheum. 17, 193–205 (1974).
15 Ruffer, M. A. & Rietti, A. On osseous lesions in ancient Egyptians. J. Pathol. Bacteriol. 16, 439–465 (1912).
16 Bourke, J. B. A review of the paleopathology of arthritic diseases in Diseases in Antiquity (eds Brothwell, D. & Sandison, A. T.) 352–369 (Thomas, Springfield, IL, USA, 1967).
17 Zorab, P. A. Historical and prehistorical background of ankylosing spondylitis. Proc. R. Soc. Med. 54, 415–420 (1961).
18 Wells, C. Joint pathology in ancient Anglo-Saxons. J. Bone Joint. Surg. 44B, 948–949, (1962).
19 Appelboom, T. Hypothesis: Rubens—one of the first victims of an epidemic of rheumatoid arthritis that started in the 16th–17th century? Rheumatology (Oxford) 44, 681–683 (2005).
20 Rothschild, B. M., Turner, K. R. & DeLuca, M. A. Symmetrical erosive peripheral polyarthritis in the Late Archaic Period of Alabama. Science 241, 1498–1501 (1988).
21 Rothschild, B. M., Woods, R. J., Rothschild, C. & Sebes, J. I. Geographic distribution of rheumatoid arthritis in ancient North America: implications for pathogenesis. Semin. Arthritis Rheum. 22, 181–187 (1992).
22 Ferucci, E. D., Templin, D. W. & Lanier, A. P. Rheumatoid arthritis in American Indians and Alaska Natives: a review of the literature. Semin. Arthritis Rheum. 34, 662–667 (2005).
23 Zeng, Q. Y. et al. Rheumatic diseases in China. Arthritis Res. Ther. 10, R17 (2008).
24 McGill, P. E. & Oyoo, G. O. Rheumatic disorders in Sub-saharan Africa. East Afr. Med. J. 79, 214–216 (2002).
25 Neovius, M., Simard, J. F. & Askling, J. Nationwide prevalence of rheumatoid arthritis and penetration of disease-modifying drugs in Sweden. Ann. Rheum. Dis. 70, 624–629 (2011).
26 Myasoedova, E., Crowson, C. S., Kremers, H. M., Therneau, T. M. & Gabriel, S. E. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007 Arthritis Rheum. 62, 1576–1582 (2010).
27 Warden, C. C. The toxemic factor in rheumatoid arthritis. Cal. State J. Med. 7, 299–301 (1909).
28 Eerola, E. et al. Intestinal flora in early rheumatoid arthritis. Br. J. Rheumatol. 33, 1030–1038 (1994).
29 Hunter, W. Oral sepsis as a cause of disease. Br. Med. J. 2, 215–216 (1900).
30 Mikuls, T. R. et al. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int. Immunopharmacol. 9, 38–42, (2009).
31 Hitchon, C. A. et al. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J. Rheumatol. 37, 1105–1112 (2010).
32 Loyola-Rodriguez, J. P., Martinez-Martinez, R. E., Abud-Mendoza, C., Patino-Marin, N. & Seymour, G. J. Rheumatoid arthritis and the role of oral bacteria. J. Oral Microbiol. http://dx.doi.org/10.3402/jom.v2i0.5784 (2010).
33 Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P. J. Periodontitis in RA—the citrullinated enolase connection. Nat. Rev. Rheumatol. 6, 727–730 (2010).
34 Koch, R. An address on bacteriological research. Br. Med. J. 2, 380–383 (1890).
35 Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).
36 Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
37 Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).
38 Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4, e1000255 (2008).
39 Zhao, L. Genomics: The tale of our other genome. Nature 465, 879–880 (2010).
40 Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).
41 Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).
42 Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
43 Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).
44 Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).
45 Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).
46 Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).
47 Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
48 Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).
49 Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069, (2008).
50 Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57, 764–771 (2008).
51 Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).
52 Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
53 Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal. Immunol. 1, 460–469, (2008).
54 Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 10, 735–744 (2010).
55 Round, J. L. et al. The Toll-Like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).
56 Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).
57 Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).
58 Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).
59 Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).
60 Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).
61 Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).
62 Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).
63 Ochoa-Reparaz, J., Mielcarz, D. W., Begum-Haque, S. & Kasper, L. H. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann. Neurol. 69, 240–247 (2011).
64 Kochetkova, I., Trunkle, T., Callis, G. & Pascual, D. W. Vaccination without autoantigen protects against collagen II-induced arthritis via immune deviation and regulatory T cells. J. Immunol. 181, 2741–2752 (2008).
65 Kochetkova, I., Golden, S., Holderness, K., Callis, G. & Pascual, D. W. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J. Immunol. 184, 7144–7153 (2010).
66 Hyrich, K. L. & Inman, R. D. Infectious agents in chronic rheumatic diseases. Curr. Opin. Rheumatol. 13, 300–304 (2001).
67 Kohashi, O. et al. Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect. Immun. 26, 791–794 (1979).
68 Bjork, J., Kleinau, S., Midtvedt, T., Klareskog, L. & Smedegard, G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand. J. Immunol. 40, 648–652 (1994).
69 Kohashi, O., Kohashi, Y., Takahashi, T., Ozawa, A. & Shigematsu, N. Reverse effect of gram-positive bacteria vs. gram-negative bacteria on adjuvant-induced arthritis in germfree rats. Microbiol. Immunol. 29, 487–497 (1985).
70 Kohashi, O., Kohashi, Y., Takahashi, T., Ozawa, A. & Shigematsu, N. Suppressive effect of Escherichia coli on adjuvant-induced arthritis in germ-free rats. Arthritis Rheum. 29, 547–553 (1986).
71 Rath, H. C. et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest. 98, 945–953 (1996).
72 Sinkorova, Z., Capkova, J., Niederlova, J., Stepankova, R. & Sinkora, J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum. Immunol. 69, 845–850 (2008).
73 Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).
74 van den Broek, M. F., van Bruggen, M. C., Koopman, J. P., Hazenberg, M. P. & van den Berg, W. B. Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin. Exp. Immunol. 88, 313–317 (1992).
75 Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).
76 Rodriguez-Reyna, T. S., Martinez-Reyes, C. & Yamamoto-Furusho, J. K. Rheumatic manifestations of inflammatory bowel disease. World J. Gastroenterol. 15, 5517–5524 (2009).
77 Carter, J. D. & Hudson, A. P. Reactive arthritis: clinical aspects and medical management. Rheum. Dis. Clin. North Am. 35, 21–44 (2009).
78 Ross, C. B., Scott, H. W. & Pincus, T. Jejunoileal bypass arthritis. Baillieres Clin. Rheumatol. 3, 339–355 (1989).
79 Moos, V. & Schneider, T. Changing paradigms in Whipple's disease and infection with Tropheryma whipplei. Eur. J. Clin. Microbiol. Infect. Dis. http://dx.doi.org/10.1007/s10096-011-1209-y.
80 Svartz, N. The primary cause of rheumatoid arthritis is an infection—the infectious agent exists in milk. Acta Med. Scand. 192, 231–239 (1972).
81 Svartz, N. The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism 4, 180–185 (1948).
82 Hannonen, P., Mottonen, T., Hakola, M. & Oka, M. Sulfasalazine in early rheumatoid arthritis. A 48-week double-blind, prospective, placebo-controlled study. Arthritis Rheum. 36, 1501–1509 (1993).
83 O'Dell, J. R. et al. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N. Engl. J. Med. 334, 1287–1291 (1996).
84 Saag, K. G. et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 59, 762–784 (2008).
85 Moreland, L. W. et al. TEAR: Treatment of Early Aggressive RA; a randomized, double-blind, 2-year trial comparing immediate triple DMARD versus MTX plus etanercept to step-up from initial MTX monotherapy. Arthritis Rheum. 60 (Suppl. 10), 1895 (2009).
86 Tilley, B. C. et al. Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann. Intern. Med. 122, 81–89 (1995).
87 O'Dell, J. R. et al. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum. 54, 621–627 (2006).
88 Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).
89 Hot, A. & Miossec, P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 70, 727–732 (2011).
90 Colin, E. M. et al. 1, 25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 62, 132–142 (2010).
91 Scher, J. U. et al. Characteristic oral and intestinal microbiota in rheumatoid arthritis (RA): a trigger for autoimmunity? Arthritis Rheum. 62 (suppl. 10) doi:10.1002/art.29156 (2010).
Acknowledgements
The writing of this manuscript has been supported in part by Grant No. RC2 AR05898 to S. B. Abramson from the US NIH through the American Recovery and Reinvestment Act (ARRA) of 2009, and by KL2 Program in Translational Research to J. U. Scher, Grant No. 1 UL1 RR029893 from the National Center for Research Resources, NIH. The authors thank Ms. Ann Rupel for assistance in preparation of the manuscript.
Author information
Affiliations
Department of Medicine, Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, 301 East 17th Street, New York, 10003, NY, USA
Jose U. Scher
Department of Medicine and Pathology, NYU Langone Medical Center, 550 First Avenue, New York, 10022, NY, USA
Steven B. Abramson
Contributions
J. U. Scher and S. B. Abramson contributed equally to all aspects of the preparation of this manuscript.
Corresponding author
Correspondence to Jose U. Scher.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
Reprints and Permissions
About this article
Cite this article
Scher, J., Abramson, S. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7, 569–578 (2011). https://doi.org/10.1038/nrrheum.2011.121
Download citation
Published
23 August 2011
Issue Date
October 2011
DOI
https://doi.org/10.1038/nrrheum.2011.121
Niciun comentariu:
Trimiteți un comentariu